If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+14x+21=0
a = -7; b = 14; c = +21;
Δ = b2-4ac
Δ = 142-4·(-7)·21
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-28}{2*-7}=\frac{-42}{-14} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+28}{2*-7}=\frac{14}{-14} =-1 $
| (5x-1)+(5x-19)=180 | | x+2=0=-2 | | -7x+12=-13x+12 | | 0,5x+1=0=-2 | | -5x-1=-7x+1 | | -x+3=-8x+24 | | -x+2=0=-2 | | x+(0,5x)=69 | | -3x-3=-6x-6 | | 12x+82=-6x-2 | | -5x-2=-3x+2 | | -3x+10=-x-8 | | -4x+8=-2x+1 | | 8x=x=0 | | -5x-3=-10x+27 | | x+(0,5*x)=69 | | -2x+7=-5x+13 | | -6x+100=3x+28 | | 7(c-5)+5c(c+4)=45 | | √x2-31=8 | | -8x-20=2x+5 | | 7(b-5)+5b(b+4)=45 | | -2x+10=3x-25 | | 5x+2=-x+32 | | 10x=48-11x | | 100=9x=1 | | p-20=9/2(18)-5 | | 4x/5+2=-6 | | x-(4-x)=3(x-4)-4 | | 9=–x+8 | | 9x=5=4+ | | 9x=5=41 |